Assembly of Torpedo acetylcholine receptors in Xenopus oocytes
نویسندگان
چکیده
To study pathways by which acetylcholine receptor (AChR) subunits might assemble, Torpedo alpha subunits were expressed in Xenopus oocytes alone or in combination with beta, gamma, or delta subunits. The maturation of the conformation of the main immunogenic region (MIR) on alpha subunits was measured by binding of mAbs and the maturation of the conformation of the AChR binding site on alpha subunits was measured by binding of alpha-bungarotoxin (alpha Bgt) and cholinergic ligands. The size of subunits and subunit complexes was assayed by sedimentation on sucrose gradients. It is generally accepted that native AChRs have the subunit composition alpha 2 beta gamma delta. Torpedo alpha subunits expressed alone resulted in an amorphous range of complexes with little affinity for alpha Bgt or mAbs to the MIR, rather than in a unique 5S monomeric assembly intermediate species. A previously recognized temperature-dependent failure in alpha subunit maturation may cause instability of the monomeric assembly intermediate and accumulation of aggregated denatured alpha subunits. Coexpression of alpha with beta subunits also resulted in an amorphous range of complexes. However, coexpression of alpha subunits with gamma or delta subunits resulted in the efficient formation of 6.5S alpha gamma or alpha delta complexes with high affinity for mAbs to the MIR, alpha Bgt, and small cholinergic ligands. These alpha gamma and alpha delta subunit pairs may represent normal assembly intermediates in which Torpedo alpha is stabilized and matured in conformation. Coexpression of alpha, gamma, and delta efficiently formed 8.8S complexes, whereas complexes containing alpha beta and gamma or alpha beta and delta subunits are formed less efficiently. Assembly of beta subunits with complexes containing alpha gamma and delta subunits may normally be a rate-limiting step in assembly of AChRs.
منابع مشابه
Neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes have a pentameric quaternary structure.
We have determined the subunit stoichiometry of chicken neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes by quantitation of the amount of radioactivity in individual subunits of [35S] methionine-labeled receptors. The chicken neuronal nicotinic acetylcholine receptor appears to be a pentamer of two alpha 4 acetylcholine-binding subunits and three beta 2 structural subunit...
متن کاملIncorporation of acetylcholine receptors and Cl- channels in Xenopus oocytes injected with Torpedo electroplaque membranes.
A method was developed to transplant assembled nicotinic acetylcholine receptors (AcChoRs) and Cl- channels from the electric organ of Torpedo to the membrane of Xenopus oocytes. Membrane vesicles from Torpedo electroplaques were injected into the oocytes and, within a few hours, the oocyte membrane acquired AcChoRs and Cl- channels. The mechanism of expression of these receptors and channels i...
متن کاملIncorporation of reconstituted acetylcholine receptors from Torpedo into the Xenopus oocyte membrane.
Xenopus oocytes are a valuable aid for studying the molecular structure and function of ionic channels and neurotransmitter receptors. Their use has recently been extended by the demonstration that oocytes can incorporate foreign membranes carrying preassembled receptors and channels. Here we show that when reconstituted in an artificial lipid matrix and injected into Xenopus oocytes, purified ...
متن کاملExpression of functional neurotransmitter receptors in Xenopus oocytes after injection of human brain membranes.
The Xenopus oocyte is a very powerful tool for studies of the structure and function of membrane proteins, e.g., messenger RNA extracted from the brain and injected into oocytes leads to the synthesis and membrane incorporation of many types of functional receptors and ion channels, and membrane vesicles from Torpedo electroplaques injected into oocytes fuse with the oocyte membrane and cause t...
متن کاملCholine acetyltransferase and acetylcholine in Xenopus oocytes injected with mRNA from the electric lobe of Torpedo.
Xenopus oocytes were injected with poly(A)+ mRNA obtained from the electric lobes of Torpedo marmorata and Torpedo ocellata, which contain the cell bodies of the neurons that innervate the electric organs. The electric lobe mRNA preparation induces the oocytes to synthesize a catalytically active form of the enzyme choline acetyltransferase (EC 2.3.1.6). Enzymatic activity is found almost exclu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 112 شماره
صفحات -
تاریخ انتشار 1991